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Identifying the ecological processes that structure communities
and the consequences for ecosystem function is a central goal of
ecology. The recognition that fungi, bacteria, and viruses control
key ecosystem functions has made microbial communities a major
focus of this field. Because many ecological processes are apparent
only at particular spatial or temporal scales, a complete under-
standing of the linkages between microbial community, environ-
ment, and function requires analysis across a wide range of scales.
Here, we map the biological and functional geography of soil
fungi from local to continental scales and show that the principal
ecological processes controlling community structure and function
operate at different scales. Similar to plants or animals, most soil
fungi are endemic to particular bioregions, suggesting that factors
operating at large spatial scales, like dispersal limitation or climate,
are the first-order determinants of fungal community structure in
nature. By contrast, soil extracellular enzyme activity is highly
convergent across bioregions and widely differing fungal commu-
nities. Instead, soil enzyme activity is correlated with local soil
environment and distribution of fungal traits within the commu-
nity. The lack of structure–function relationships for soil fungal
communities at continental scales indicates a high degree of func-
tional redundancy among fungal communities in global biogeo-
chemical cycles.
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The structure and function of ecological communities are in-
timately linked, such that the number and identity of species

within a community often affect the key ecosystem properties of
primary productivity (1), resistance and resilience to disturbance
(2), and rates of nutrient cycling (3). However, understanding the
extent to which structure–function relationships hold across
communities and over large spatial scales continues to be a ma-
jor goal of ecological research. Identifying these relationships for
microbial organisms is particularly critical, because these or-
ganisms control rates of key ecosystem processes (the cycling of
nitrogen, phosphorus, and carbon) (4) and directly affect the
community structure of plants and animals through pathogenic
or mutualistic interactions (5). As such, microbial activity is also
intrinsic to Earth system models that inform citizens and policy
makers of ecosystem dynamics and energy exchange between the
biosphere and the atmosphere (6). As in plant communities of
tropical rainforests (7), the incredible number of microbial taxa
on Earth has been a challenge for understanding the link between
diversity and function. Advances in DNA sequencing technology
have recently allowed for a robust characterization of bacterial
biogeographic patterns (8); however, to date, studies have exam-
ined structure–function relationships at a fixed scale (9–12). As a
result, it is not yet clear how microbial function is linked to large-
scale biogeographic patterns, whether or not this link is a more
reliable determinant of microbial function in global biogeochem-
ical cycles than other environmental factors, or how these rela-
tionships vary across geographic regions.

Certain ecological processes are only apparent or important
at a particular scale (13), so a comprehensive understanding of
microbial systems requires observation of community–environ-
ment–function interactions at multiple scales. A popular hypo-
thetical framework that integrates spatial scale with ecological
processes is a filter-type model (14, 15), where species pools are
initially determined by processes at large spatial scales (16, 17),
like evolutionary history or the presence of major dispersal barriers
(dispersal filter). Environmental conditions then determine which
species within the pool are able to colonize a particular habitat
(environmental filter), and coexistence at smaller spatial scales is
determined by niche differences and competition (biotic filter)
(18, 19). Historically, a widely invoked assumption has been that
the function of soil microbial communities is set primarily by the
environmental filter, such that abiotic factors determine the
physiology of whole microbial communities (20, 21). Recently,
studies that have explicitly considered the composition and diver-
sity of microbial communities at the local scale have also observed
relationships between community composition and biochemical
function of microbes in soils (9, 22), suggesting that the structure
of microbial communities, per se, may be important. However,
it is unclear if a link between community structure and func-
tion for microbial communities operates on a larger scale, inde-
pendent of environment. If so, then knowing the structure of
regional species pools will be important for understanding the
function of microbial communities over large geographic regions.
Alternatively, structure–function relationships may break down if
there is high functional redundancy among the many microbial
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taxa that exist, as suggested by observations that the rate of soil
biogeochemical cycles saturates with the addition of many mi-
crobial species (23, 24).
To determine how microbial community structure and function

are linked from the local to continental scale, we characterized
soil fungal species composition, environmental conditions, and
extracellular enzyme activity in over 600 soil samples taken from
25 plots spanning the geographic extent of the continental
United States (Fig. S1). To focus our study on fungal-dominated
soil communities, and to reduce confounding effects of dominant
vegetation type that could drive cross-biome differences in fun-
gal community structure–function relationships, we established
plots in forests dominated by single host species from the plant
family, Pinaceae (Table S1). To analyze turnover in fungal
communities, environmental factors, and enzyme activity con-
tinuously from the local scale to the continental scale, we used
a spatially explicit, nested design so that between-sample dis-
tances ranged over four orders of magnitude, from ∼0.1 m to
5,900 km. To decouple spatial and environmental factors, we
took advantage of the strong changes in the soil chemical en-
vironment that occur vertically along the soil profile by sepa-
rately identifying the fungi present in the organic and mineral
horizons of each soil sample. To characterize community func-
tion, we measured the activity of extracellular enzymes involved
in nutrient cycling. The activity of extracellular enzymes is a major
aggregate function of decomposer communities that correlates
with rates of carbon and nutrient cycling through dead organic
matter (25). Whereas bacteria are a major component of the soil
microbiome, fungal abundance and activity peak in low-pH
(26), carbon-rich soils (27), as typified by temperate co-
niferous forests (Fig. S2). Under these conditions, fungi are
the major producers of extracellular hydrolytic and oxidative
enzymes (28).

Results and Discussion
We found that within this single forest type, fungal community
composition is delineated strongly by geographic regions within
North America (Fig. 1A). This result shows that geographic
endemism is a key feature of fungal communities, as seen with

plants and animals, and broadly parallels biogeographic prov-
inces previously described for North America (29). As a conse-
quence of geographic endemism, soil fungal communities
displayed a significant distance–decay relationship spanning
the meter to continental scale (Fig. 1C) that explained >50% of
total variation in species composition. This pattern is most
consistent with a strong role for dispersal limitation as a driver of
community turnover (8). Whereas climate, host plant identity,
and local environment varied across our sites (Table S1) and can
play an important role in structuring fungal communities (30),
we found that only a small proportion of community variation
was explained by these factors relative to spatial distance per se
(Fig. 1A and Table S2). With respect to climate, the weak
correlation with community composition is likely because
a significant portion of the distance decay of fungal commu-
nities (Fig. 1C) occurs at the local (0–40 m) and landscape (1–
100 km) scales over which climate is relatively invariant (Table
S3). Variation in fungal community composition was saturated
among samples that were taken from widely differing climates,
indicating that fungal communities turn over in space much faster
than climate. Thus, physiological and experimental approaches,
rather than community-based analyses, will ultimately be
necessary to determine how sensitive these communities are
to climatic variables.
Other types of environmental variation had similarly small

effects on fungal community structure. At the local scale, we
sampled across steep soil chemical gradients (i.e., between the
organic and mineral soil horizons) but found little consistent
variation in fungal community composition (Fig. 1A). In fact,
samples from different horizons in the same soil core often
showed the highest degree of species overlap (Fig. 1C). Although
vertical stratification of fungal communities is widely reported in
the literature (31–33), the primary differences in fungal com-
munity composition generally occur between litter and soil,
rather than between the two soil horizons (organic and mineral)
that we sampled. Previous studies that have sampled across
different forest types (34) or across fine scales at the local level
(35) have clearly demonstrated the importance of environmental
or habitat filtering of fungi. However, using our study design to
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Fig. 1. Biogeography and functional geography
maps of soil fungal community structure and func-
tion in pine biomes across North America. Patterns
of fungal community composition (A) and soil en-
zymatic activity (B) are illustrated by coloring sam-
ples by geographic location (Inset). Symbol size
indicates whether the sample originated from the
organic (large circle) or mineral (small circle) soil
horizon. Lines represent single-factor least-squares
regression across all samples for factors explaining
the most variation in fungal community composition
(C) or activity of enzymes responsible for fast carbon
and nutrient cycling (D). Statistics are derived
from multiple regression analysis (A and B) or single-
factor regression analysis (C and D). Asterisks repre-
sent significance of correlation (****P < 0.0001;
***P < 0.001; **P < 0.01; *P < 0.05). Points represent
individual organic and mineral horizon samples col-
lected from each sampling location at each plot in
each field site (fungal community composition, n =
551; enzyme activity, n = 253).
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compare the role of local soil environment directly with other
factors hypothesized to shape communities, we find that local
environmental conditions play a secondary role to large-scale
geographic processes in structuring fungal communities.
Rapid community turnover at local scales and high degrees of

endemism at the largest scales are most consistent with dispersal
as an important driver of local and regional species pools.
Studies of airborne fungal spores show that dispersal can be
a limiting factor at the meter to kilometer scale (36, 37). Simi-
larly, evidence from population genetic (38) and phylogeo-
graphic (39) studies shows that large geographic features (e.g.,
oceans, mountains) are effective dispersal barriers to fungal
populations. Limited dispersal in tandem with the strong priority
effects that have been observed for fungi (40) may give rise to
historically contingent fungal communities (41). Such historical
contingencies may explain the high levels of community di-
vergence we observed across plots within the same region.
Our results contrast with those of other studies of widely

dispersing organisms for which environmental conditions can be
the primary limits on community assembly (27, 42). Minimum
winter temperatures and maximum summer temperatures con-
strain the migration and total population sizes of migrating birds,
insects, and parasites (42), whereas pH is a strong predictor of
soil bacterial community structure across biomes (43). This
discrepancy may be the result of the poor dispersal ability of
fungi, or the wider climatic tolerances of fungi compared with
macroorganisms. For example, many ectomycorrhizal fungi
persist in novel climates but first require introductions to
establish (44). It is possible that host species range accounts
for differences in ectomycorrhizal community structure across
large geographic regions. However, strong host specificity of
mycorrhizal fungi is not common below the plant family level
(45). Collectively, these observations indicate that large-scale
geographic processes like dispersal limitation are first-order de-
terminants of both regional species pools and community com-
position of soil fungi at landscape scales. These results are
consistent with the general filter-type models of community as-
sembly often applied to plant and animal communities (16),
which hypothesize that dispersal sets the regional species pools,
whereas environmental factors and organismal traits define
abundance of species at local scales.
In contrast to fungal communities, soil enzyme activity did not

differ across regions of the continent (Fig. 1B). Instead, enzyme
activity varied primarily at the local scale, correlating most
strongly with soil chemistry. Activity of extracellular enzymes
responsible for fast carbon and nutrient cycling (i.e., carbohy-
drases, phosphatases, chitinases, proteases) was best explained
by availability of resources (e.g., carbon) to saprotrophs, which
varied across soil horizons and accounted for 49% of the varia-
tion in enzyme activity (Fig. 1D, Table S2, and Dataset S1).
Enzymes responsible for the slow release of carbon from re-
calcitrant plant and soil material (phenol oxidases and perox-
idases) correlated with climate, soil moisture, and pH (Table S2
and Dataset S1), consistent with other studies on hydrolase and
oxidase activity in bulk soil both within and across biomes (12,
21). Although saprotrophic bacteria can contribute to extracel-
lular enzyme activity in bulk soil (46) and may be responsible for
some of the activity we observed, the relative abundance of soil
fungi is highest in temperate forest soils characterized by low pH
and high carbon/nitrogen ratios, such as ours (27) (Fig. S2).
Metaproteomic (28), metatranscriptomic (47) and meta-
genomic studies (48) show that in these systems, fungi are the
dominant producers of extracellular enzymes involved in de-
composition. Although aggregate measures, such as enzyme ac-
tivity, cannot assign functions to individual organisms, our analysis
showed that models best explaining the activity of both fast and
slow carbon cycling enzymes included a measure of fungal func-
tional trait composition. Specifically, peroxidase activity correlated
positively with the ratio of ectomycorrhizal to saprotrophic di-
versity, whereas cellobiohydrolases showed the reverse trend, cor-
relating positively with the ratio of saprotrophic to ectomycorrhizal

diversity (Dataset S1). These observations are consistent with the
classical notion of saprotrophs as principal degraders of readily
available carbon, as well as recent hypotheses that ectomycor-
rhizal fungi target nutrients bound in complex soil organic
matter (49, 50). Because species-level composition of fungal
communities does not correlate strongly with enzyme activity at
the scale of this study, functional trait or phylogenetic approaches
targeting key resource acquisition strategies may offer a better
predictive framework for understanding fungal function across
systems that have few species in common.
Our examination of fungal community structure and key

ecosystem processes that are affected by fungi across a range of
scales provides an important window into functional structure of
highly diverse communities. Soils on different sides of the continent
can have no fungal species in common and yet function very sim-
ilarly with respect to the key enzymes driving biogeochemical
cycles. Because fungi are major contributors to the decomposition
process, this divergence of community structure and convergence
of function demonstrate that much of fungal diversity in pine
forests across North America may be functionally redundant from
the perspective of nutrient cycling and decomposition. This func-
tional redundancy is likely due to broad convergence in resource
capture strategies across lineages of soil fungi. Common selection
pressure has led to convergence on a core set of functional strat-
egies across plant lineages (51) and leads to structural similarity in
plant communities across different biogeographic regions. Simi-
larly, the primary fungal trophic strategies are highly polyphyletic
and distributed broadly across the fungal tree of life (52). For
example, the ectomycorrhizal habit has evolved independently at
least 66 times across the kingdom (53). Although most species
appear to have restricted ranges in our study, the major fungal
lineages are present in all of the geographic regions we surveyed
(Table S4). Similar enzyme activities across regions are likely
driven by selection for active taxa within these lineages by local
gradients in resource availability. New efforts to represent microbes
in biogeochemical models should therefore focus on trophic
groups, rather than taxonomic diversity, to simulate short-term
and long-term carbon storage on land. Our results lend empirical
support to recent theoretical and empirical work showing that
explicitly representing ectomycorrhizal and saprotrophic fungi in
biogeochemical models alters simulations of soil carbon fluxes
(54, 55) and will likely improve quantitative predictions of global
carbon balance.
Our observation that the key drivers of fungal community

composition and ecosystem function in soils operate at disparate
scales presents a fundamental insight into the nature of these
communities. Because most of the variation in decomposition
activity can be found within a single forest, we can understand
much of how fungal communities function by working at the
local scale. Although predicting microbial function requires
knowledge of local environmental conditions and richness esti-
mates of key trophic groups, predicting the species composition
of natural fungal communities first requires knowledge of geo-
graphical context, such as physical location, climate, and patch
size. Regional endemism is a defining characteristic of soil fungal
communities, with 85% of taxa in our study only found within
a single bioregion (Fig. 2). Such endemism has implications for
how society interacts with local natural ecosystems and can inform
fields like microbial forensics, where reliable tracers of criminal
activity across terrestrial habitats are critical (56). Endemism also
allows for more complete descriptions of bioregions that include
both aboveground and belowground biota (i.e., the Pinus ponderosa-
Rhizoscyphus forest of the Sierra Nevada in California as distinct
from the P. ponderosa-Tricholoma forest of the Cascade Range
in Oregon). Conservation efforts to protect natural habitats may
need to consider these belowground microbial communities,
because endemic fungi risk extinction by habitat destruction and
global climate change.
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Materials and Methods
Soil Sampling. To look at fungal community and functional turnover across
a range of spatial scales, we used a hierarchical sampling design that allowed
comparisons of multiple samples within a plot, across landscapes, and across
the continent (Table S1). To do this while minimizing the known effects of
vegetation biome types on microbial community structure and function (9,
57), we chose to focus on forests dominated by a single plant family, the
Pinaceae (Table S1). The Pinaceae are ideal for exploring environment–
community–function relationships across the fungal kingdom because they
have a broad distribution across North America and show low levels of host
specificity for mycorrhizal fungi within the family (47, 58). For example,
North American pines readily associate with European ectomycorrhizal fungi
(44), and co-occurring Pinaceae and angiosperms often share most common
ectomycorrhizal fungi (59). Plots were chosen with the help of local experts
to find mature stands with high dominance of a single Pinaceae species at
sites spanning the North American continent (Fig. S1).

Sampling was carried out in 2011 and 2012 near the period of peak plant
biomass production for a given region. In each plot, 13 soil cores were

collected from a 40-m × 40-m grid (Fig. S1). To look at turnover of com-
munity and function at the landscape scale, we ensured that each plot had
at least one other plot located within a 1- to 50-km range (Fig. S1B). This
design was chosen because it facilitates analysis of turnover at fine spatial
scales by enabling multiple comparisons for each sampling distance. At each
point in the plot, fresh litter was removed and a 14-cm deep, 7.6-cm di-
ameter soil core was taken and immediately separated into a humic/organic
horizon and mineral horizon. Our sampling protocol resulted in a total of 26
soil samples collected per plot (13 sample points × two horizons). After re-
moval, soils were kept on ice and transported to the nearest university
within 8 h of collection. Soils were sieved through a 2-mm mesh to remove
roots and rocks and homogenized by hand. A ∼0.15- to 0.25-g subsample
was placed directly into a bead tube from the Powersoil DNA Extraction Kit
(MoBio), and the samples were stored at 4 °C until DNA extraction. Before
extraction, samples were homogenized for 30 s at 75% power using a Mini-
Beadbeater (BioSpec). A second subset was used for soil moisture mea-
surements (described below), and a third subset was preserved for extra-
cellular enzyme analysis and characterization of soil chemistry (frozen at
−80 °C). Soils were preserved within 48 h of field sampling.

Fungal Community Composition. To determine the fungal community com-
position in each soil sample, we used high-throughput sequencing of fungal
DNA amplicons from each soil sample following the procedure of Talbot et al.
(49). DNA was extracted from bulk soil and the internal transcribed spacer
(ITS) region of the nuclear ribosomal RNA genes was amplified using the
fungal-specific primers ITS1f and ITS4. We then identified the fungal com-
munity in each soil sample using 454-pyrosequencing of the ITS region with
primer barcoding methods following the method of Talbot et al. (49). In-
dividual PCR reactions were cleaned using an Agencourt Ampure XP kit
(Beckman Coulter), quantified fluorescently with the Qubit dsDNA HS kit
(Life Technologies), and pooled at equimolar concentration before pyrose-
quencing. Pyrosequencing was performed using a one-eighth or one-fourth
run on the Roche Genome Sequencer FLX system at the Duke Institute for
Genome Sciences and Policy. Sequence data were analyzed using the
Quantitative Insights into Microbial Ecology (QIIME) pipeline (60). Initial
sequence processing and sample assignment were done using the split_li-
braries.py command with a minimum/maximum sequence length cutoff of
350/1,200 bp, maximum homopolymer run length of 10 bp, and maximum
barcode error number of 1.5. To account for the sequencing error that can
arise as part of the PCR and 454-sequencing process, we used flowgram
clustering (61) implemented in the denoise_wrapper.py command using
a titanium error profile. Denoised sequences were chimera-checked and
clustered into operational taxonomic units (OTUs) using the usearch option
(62) in the pick_otus.py command. Chimera checking was implemented in
usearch using both de novo and reference-based methods against the QIIME
12_11 alpha release of curated ITS sequences from the unified system for the
DNA-based fungal species linked to the classification (UNITE) database. Only
sequences identified as chimeric using both de novo and reference methods
were considered chimeric and removed from the analysis.

Sequences were clustered into OTUs in usearch using a 97% sequence
similarity threshold and aminimal cluster size of one. Taxonomywas assigned
by searching representative sequences from each OTU against a previously
published fungal ITS database (63), including well-curated sequences from
the National Center for Biotechnology Information (NCBI) GenBank and
UNITE using BLAST with a minimum expected value of 0.001 with the QIIME
assign_taxonomy.py script. We chose to use this database instead of the QIIME
12_11 ITS database because the QIIME/UNITE database contained a large
number of sequences with uninformative taxonomy. However, hand-checking
of a number of the taxonomic assignments showed good concordance be-
tween identified taxa across the two databases. For the top 100, the two
databases were consistent in 98 of 100 cases. The two disagreements were due
to (i) an OTU with no close sequence matches in GenBank (closest match was
80%) and (ii) an error in GenBank that was incorporated into the QIIME/UNITE
release. Of the 98 OTUs that were consistent, 45 showed an identical match at
the genus level, 51 were not identified to genus (or above) using the UNITE
database, and 2 had no BLAST hits with our database. Taxonomic assignments
were consistent with GenBank sequences when manually compared using the
BLASTn algorithm.

To look at the effects of fungal lifestyle on patterns of community and
functional turnover, OTUswere categorized as ectomycorrhizal (ECM) or non-
ECM based on current knowledge of metabolic lifestyle of the BLASTmatches
for each individual taxon (53). Inspection of the non-ECM OTUs shows that
they are primarily decomposers of litter and woody plant material, although
they also include some root endophytes and pathogens.
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To investigate the reliability of 454-sequencing, we repeatedly se-
quenced independent PCR reactions from the same DNA extraction for
four different samples (between three and five replicates per extraction).
Samples were prepared and sequenced as above. Although there was
variability between sequencing reactions for the same sample, we found
that (i ) quantitative patterns of taxon abundance were highly repeat-
able within the same sample and (ii ) low-abundance taxa were often
present in multiple samples, suggesting that they are not artifacts of the
PCR or sequencing process. Based on these findings, we chose to retain low-
abundance taxa in our analyses, because they are likely real, but to use the
Bray–Curtis dissimilarity metric that weights abundant taxa more heavily.
Although sequence abundance is not likely a perfect indication of relative
biomass, these data suggest that it is still a better indicator of similarity
between fungal communities than an incidence-based metric. In addition,
results of community analyses using presence/absence data lead to essentially
the same conclusions.

Soil Chemistry. Each soil horizonwas analyzed for total carbon, total nitrogen,
pH, total extractable ammonium and nitrate content, and percentage of soil
moisture. Subsamples of fresh soil from each horizon at each sampling point
in a plot were analyzed for soil water content by drying at 60 °C for 48 h.
Frozen soils were thawed and analyzed for pH in a 1:1 water ratio using
a glass electrode. To generate carbon/nitrogen ratios, total carbon and total
nitrogen were analyzed using dry combustion on a Vario MAX CNS Ele-
mental Analyzer (Elementar, Inc.) at the University of Minnesota or the Carlo
Erba NA 1500 Elemental Analyzer at Stanford University. Total extractable
ammonium and nitrate concentrations were analyzed in 2.0 M potassium
chloride extracts of each soil sample using a WestCo SmartChem 200 discrete
analyzer at Stanford University.

Soil Enzyme Analyses. We assayed the potential activities of seven extracel-
lular enzymes involved in soil carbon and nutrient cycling: cellobiohydrolase
(an exocellulase), β-glucosidase (which hydrolyzes cellobiose into glucose),
polyphenol oxidase (which oxidizes phenols), peroxidase (including oxidases
that degrade lignin), acid phosphatase (which releases inorganic phosphate
from organic matter), N-acetyl-glucosaminidase (which breaks down chitin),
and leucine-aminopeptidase (which breaks down polypeptides). Potential
enzyme activities in bulk soil were measured separately for individual or-
ganic and mineral horizon samples using fluorometric and colorimetric
procedures (64) on a microplate reader (n = 253).

Climate. We obtained climate data for each sample using the WorldClim
global climate dataset (65). For this purpose, we chose to use the Bioclim
variables, which summarize monthly precipitation and temperature into 19
meaningful biological variables, such as temperature seasonality or pre-
cipitation of wettest month (Dataset S2) Although other datasets, such as
Prism and Daymet, also provide high-resolution climate data, neither was
available across all of our study sites. The latitude and longitude for each
sample point were used to extract values for all Bioclim variables from North
American raster layers with a 30-arc second resolution (∼1 km). Bioclim tiles
were downloaded, and data were extracted using the Raster package in R.

Data Analysis and Statistics. To determine the role of different spatial and
environmental factors in determining structure and function of fungal
communities, we collapsed environmental variables into vectors using
principal components analysis (PCA). The percentages of soil moisture, total
soil carbon, and total soil nitrogen were highly correlated, whereas pH was
weakly correlated with soil carbon/nitrogen ratio and nitrate-nitrogen (Table S5).
Ammonium and nitrate concentrations were not measured at all sites, but
because ammonium correlated with percentage of soil nitrogen (Table S5), we
chose to omit ammonium and nitrate from the soil chemistry PCA. After ex-
amining scree plots, we chose to retain the first two principal components,
which explained 79.9% (PC1 = 56.1%, PC2 = 23.8%) of the variation in soil
chemistry variables. Climate variables were also highly correlated and
separated into three principal components that explained 90.5% (PC1 =
47.1%, PC2 = 32.3%, PC3 = 11.1%) of the variation in climate across sites
(Dataset S2). Mantel tests were used to identify spatial autocorrelation
in soil chemistry variables (across individual soil samples) and climate
variables (across plots). The data reported in this paper are tabulated in
Datasets S1 and S2.

Factors Determining Fungal Community Composition Across All Samples. To
determine the factors controlling fungal community composition in soils
across all samples, we used multiple regression on matrices (MRM) tests in
the ecodist R package (66). Permutation tests were conducted with spatial

distance (meters), soil chemistry PC1 or PC2, or climate principal component
axes as independent variables and with Bray–Curtis community dissimilarity
among samples as the dependent variable. For comparative analyses among
samples, samples were rarefied to 500 ITS reads (n = 551). Bray–Curtis dis-
similarity was based on the average of 10 different rarefactions. Community
similarity using the Bray–Curtis abundance-based dissimilarity index was
highly correlated with the incidence-based Jaccard index (Mantel test: r =
0.97, P < 0.0001). To determine the relative importance of geographic and
local environmental factors in structuring communities, we then conducted
multiple regression using MRM, including those variables that showed sig-
nificant correlation with community composition in the univariate analyses
and explained over 2% of variation in community dissimilarity. Stepwise
model selection by Akaike’s information criterion corrected for small sample
sizes (AICc) was used to determine factors retained in each multiple re-
gression model. Models with the smallest AICc value are considered those
best supported by the data. Patterns of community dissimilarity among
samples were visualized with nonmetric multidimensional scaling (NMDS).

To visualize the role of geography in structuring soil fungal communities,
color was assigned to each sample point based on location in North America
following a modified version of the approach outlined by Kreft and Jetz (29).
Basically, a color gradient was generated by assigning the colors red, yellow,
blue, and green to four corners of a 2D plot and then interpolating across
the remaining pixels in steps of 100. The color gradient was then projected
onto a 101-cell × 101-cell raster map of the North American continent
spanning 50° of latitude (range: 25–75°) and 100° of longitude (range: −150
to −50°). Each cell in the North American raster was assigned a correspond-
ing value from the color gradient raster. The colors assigned to sample
points in Fig. 1 are thus based on the color assigned to the corresponding
geographic coordinate. This method provides a way of depicting geographic
provenance without relying on a priori assumptions about fungal bio-
geographic realms.

Factors Determining Soil Enzyme Activity Across All Samples. Soil enzymes
were highly correlated (Table S6); thus, to reduce the measured enzymes to
a reasonable number of predictors, we used a PCA on the log-transformed
variables. After examining scree plots, we chose to retain the first two
principal components, which explained 70.6% (PC1 = 54.7%, PC2 = 15.9%)
of the variation in soil enzymes. The first principal component was associ-
ated with variation in carbohydrate-, phosphorus-, and nitrogen-targeting
enzymes, and the second was associated with polyphenolic (PPO, PER)-
targeting enzymes (Table S6).

To determine the effect of fungal community, resource availability, and
climate on enzyme activity, we first conducted univariate analyses with
spatial distance, fungal community dissimilarity (Bray–Curtis), ECM species
richness, saprotrophic species richness, soil chemistry PC1 or PC2, or climate
PC1 or PC2 as independent variables and enzyme activity in bulk soil or
enzyme principal components as independent variables. MRM analysis was
used for fungal community composition and spatial distance only; other-
wise, linear least-squares regression was used. To determine the relative
importance of factors in structuring soil enzyme activity, we then conducted
multiple regression analysis using only those variables that showed signifi-
cant correlation with soil enzyme PC1 and PC2 in the univariate analyses and
explained more than 2% of variation in soil enzyme activity. Stepwise model
selection AICc was used to determine factors retained in each multiple re-
gression model. For instances where climate predicted enzyme activity, we
generated slope and P values using a linear mixed effect model, which
adjusts degrees of freedom to account for multiple soil samples collected
under the same climate conditions.

All statistical tests and graphics were done using the program R, version
2.7.2 (R Core Development Team, 2008). Distance matrices and NMDS ordi-
nation were performed with the package Vegan (67), and Mantel tests and
MRM were performed with the package Ecodist. In cases where data did not
conform to assumptions of normality and homogeneity of variance, values
were log-transformed before analysis. All statistical tests were considered
significant at P < 0.05.
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