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Abstract

Along the Central Coast of California, USA, native plant biodiversity has

depended on various forms of Indigenous stewardship such as burning, tilling,

and gathering. Simultaneously, the Amah Mutsun Tribal Band (the Tribe)

depends on these native ecosystems for cultural survivance. However, much of

the knowledge related to the location and caretaking of cultural plants has

become dormant in the community due to the immediate and ongoing effects

of Euro-American colonization. We identified potential gathering areas by

modeling the spatial distributions of 10 culturally important plants throughout

the Tribe’s stewardship area. We utilized community science datasets with an

ensemble modeling approach that combines the results of five machine learn-

ing models to predict not only the distribution of each species, but also the rel-

ative certainty of those predictions spatially. Our results revealed that

265.2 km2 (2.1%) of the Tribe’s stewardship area is predicted habitat for seven

or more of these cultural plants, and that the Tribe has potential access to

approximately a third of these high-priority areas. Our findings will directly

inform the Tribe’s cultural revitalization and ecological stewardship programs.

We show how geospatial models can support the revitalization of an

Indigenous culture by renewing relationships with cultural plants.
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INTRODUCTION

Indigenous peoples throughout California, USA, have
been shaping the region’s ecosystems for millennia,
stewarding landscapes through practices including burn-
ing, tilling, gathering, and planting (Anderson, 2013;
Cuthrell et al., 2016). These reciprocal relationships
between people and ecosystems are crucial for both the

health and cultural sovereignty of Indigenous communities
and the many ecosystems that depend on human steward-
ship (Baumflek et al., 2015; Kimmerer, 2011; Lake
et al., 2017; Lopez, 2013). This “mutual caretaking between
people and place” (Diver et al., 2019) has been restricted by
both the immediate effects of Euro-American colonization
(i.e., displacement and genocide) and its ongoing legacies
(i.e., proprietization of land and systemic oppression of
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Indigenous Peoples) (Sanchez et al., 2021). Despite these
challenges, Indigenous communities in California are
working to restore relationships with their homelands. In
tandem, ecologists are increasingly recognizing the impor-
tance of active restoration and stewardship of native
ecosystems, creating new opportunities for collaboration
between tribes and land managers (Lightfoot et al., 2021).

For many people within the Amah Mutsun Tribal
Band (hereafter AMTB or the Tribe), ecological restora-
tion of their stewardship area along California’s Central
Coast (Figure 1) is a key goal of cultural revitalization
efforts and is seen as a spiritual and moral obligation
(Lopez, 2013). Past research with and by the Tribe has
highlighted the importance of Amah Mutsun stewardship
for maintaining healthy populations of native plants,

particularly those dependent on disturbance (Anderson,
2013; Cuthrell, 2013). Amah Mutsun foodways, ceremo-
nies, and medicines depend on relationships with the
diverse plant and animal species found in native ecosys-
tems (Cuthrell, 2013; Lopez, 2013). As a nonfederally rec-
ognized tribe, AMTB is not guaranteed property rights
within their traditional homelands. Therefore, the Tribe
is increasingly partnering with researchers, land-owning
agencies, and conservation organizations to create oppor-
tunities for Amah Mutsun people to steward, gather, and
restore their plant relatives as a means of healing both
plants and people (Lightfoot et al., 2021). However, rein-
stating Amah Mutsun stewardship in many of these parks
depends not only on formal access agreements, but also on
the revitalization of dormant ethnobotanical knowledge

F I GURE 1 Model area, study area, and spatially filtered presence locations of California black oak (Quercus kelloggii) used with the model

runs. The model area represents the area over which the models were run. Our final results were restricted to the study area, that is, the

boundaries of the AmahMutsun stewardship area. The inset map in the upper right shows the location of the model area within California, USA.
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related to the uses, stewardship, and location of cultural
plants within the community. Baumflek et al. (2015) assert
that access to gathering areas enables both retention and
intergenerational transmission of knowledge about plant
use and ecology. Therefore, a critical next step is to build
the Tribe’s knowledge of the locations of cultural plants—
defined here as plants that are used for food, medicine,
ceremonies, basketry, and other materials—within their
stewardship area. This region’s particular history of coloni-
zation has meant that precise definitions of tribal political
boundaries are often contentious and difficult to determine;
our study therefore takes place within the Tribe’s steward-
ship area, defined as the lands and waters that they are
working to restore and steward.

Species distribution models (SDMs) are frequently
used to predict the actual or potential locations of a spe-
cies (Guisan & Zimmermann, 2000). These models use a
variety of statistical approaches to build a relationship
between environmental or climatic variables and known
presence locations of that species (Elith et al., 2006; Li &
Wang, 2013). Previous work has used a single SDM to
map the habitat of one or two ethnobotanical species
(Baumflek et al., 2015; Gorman et al., 2008). By expanding
both the number of models used and the number of spe-
cies mapped, SDMs can create a more accurate and com-
prehensive picture of areas that are likely to contain
multiple ethnobotanical species. Known locations of the
target species are an integral input to an SDM; while a
field survey of multiple species is not commonly feasible,
large community science databases such as iNaturalist
now enable modeling of multiple species across large
areas using methods that account for their spatial biases
(Di Cecco et al., 2021). Additionally, although any SDM
has certain limitations and biases, an ensemble modeling
approach minimizes the biases of any one model (Eisen
et al., 2018).

While geospatial tools and data are useful, they have
been used to exploit, extract, and reduce Indigenous ways
of knowing (Baumflek et al., 2015; Brown & Kyttä, 2018;
Reid & Sieber, 2020). Therefore, this research began with
two years of discussions with the AMTB Tribal Council, the
tribally held Amah Mutsun Land Trust, and associated
researchers about our mutual research goals. Lead author
Taylor is a non-native scientist trained in the ecological and
geospatial sciences; coauthor Sigona is an interdisciplinary
social scientist and an Amah Mutsun tribal member. Taylor
and Sigona conducted 12 in-depth interviews with tribal
elders and cultural practitioners regarding their relation-
ships to land, culture, and the environment. Interviewees
were identified in partnership with AMTB leadership and
included tribal members with experience stewarding lands
for cultural purposes. These semistructured interviews
and our participation in tribal events helped us to build

relationships with a broader group of Amah Mutsun
community members. This study was designed from the
priorities expressed in those interviews—principally the
restoration of ethnobotanical knowledge and reconnection
with specific basketry and food plants—and represents
one piece of our ongoing collaboration.

This study aims to support the Tribe’s larger goal of
restoring relationships between the Tribe and culturally
important plants. Currently, the Tribe has potential
access to more than 1000 km2 of land within their stew-
ardship area, with varying opportunities for gathering or
stewardship of cultural plants. A complete field survey of
these lands is not monetarily or physically feasible; there-
fore, we developed an ensemble distribution modeling
method to identify and prioritize potential gathering
areas with the ultimate goal of restoring ethnobotanical
knowledge. Our three objectives were as follows:

1. Model the distribution of 10 cultural plants within the
Amah Mutsun stewardship area;

2. identify areas where multiple cultural plants are likely
to be found; and

3. evaluate which of these possible gathering locations
are most accessible to the Tribe.

Our results will directly inform the Tribe’s restora-
tion and gathering programs and guide recommenda-
tions for agencies in their stewardship area. We
recognize that the Amah Mutsun community relates to
these plants as relatives. Due to the sensitive nature of
these culturally important species, some of our spatial
results are not public and are visible only to members of
the Amah Mutsun community. With the permission of
the Amah Mutsun Tribal Council, we have included
our complete results for one of the 10 priority plants:
California black oak (Quercus kelloggii). California black
oaks are generally found in foothills or lower elevation
mountains and their acorns are a preferred source
for Mutsun acorn foods. We have also shared spatial
results for the wavy-leafed soap plant (Chlorogalum
pomeridianum), which can be prepared as food or used
as a soap. For the eight other cultural species and
the final results regarding potential gathering areas, we
have included summarized results that do not indicate
spatial locations.

METHODS

Model area and study area

All models (described below) were run within the maxi-
mum rectangular extent of the Amah Mutsun stewardship

ECOSPHERE 3 of 16
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area (the model area) and our final results were restricted
to the actual boundaries of the stewardship area (the study
area) (Figure 1). The study area includes regions of San
Mateo, Santa Clara, Santa Cruz, San Benito, and Monterey
counties within the Central Coast of California. This
region is characterized by a Mediterranean climate with
cool wet winters and warm dry summers and is subject to
frequent periods of drought. Inland areas have greater
temperature variations throughout the year (hotter sum-
mer temperatures and colder winter temperatures) than
coastal areas.

Observation data

Species observation data included a combination of three
confidential datasets and one public dataset. AMTB col-
lected presence locations for 20 culturally significant spe-
cies on preserves managed by the Midpeninsula Regional
Open Space District located within San Mateo and Santa
Clara counties from 2014 to 2019. We also incorporated
plant observation data from the University of California
Santa Cruz Younger Lagoon Reserve plant restoration
team collected from 2014 to 2021 within Santa Cruz
County, and from archeological surveys conducted in col-
laboration with the Tribe from 2014 to 2020 (Apodaca &
Lightfoot, 2020; Younger Lagoon Reserve, 2021).

We combined these three confidential datasets with
research-grade species observation data from the iNaturalist
API using the pyinaturalist Python package for 15 of the
Tribe’s cultural priority species within the model area
(iNaturalist Users, 2021). We used the coarsest resolution
of our predictor variables (30 arc seconds, or approxi-
mately 740 � 920 m) to spatially filter the observation
data using the Point to Raster and Raster to Point tools in
ArcGIS Pro, which excluded duplicate points if they fell
within the same pixel footprint (ESRI, 2021). We then
selected the 10 species with at least 100 observations.
These 10 plants are Artemisia douglasiana, Calandrinia
menziesii, C. pomeridianum, Clinopodium douglasii,
Corylus cornuta ssp. californica, Q. kelloggii, Rubus
parviflorus, Rubus ursinus, Sambucus nigra ssp. caerulea,
and Vaccinium ovatum. The ArcPy Python package was
used to prepare each species’ observation dataset for
input into the models (ESRI, 2021).

Background points

We used presence-only observation data that were col-
lected opportunistically in some cases and systematically
in others. While this is a common approach in SDMs,
uneven sampling effort and lack of recorded absence

locations can lead to results that are spatially biased
toward more accessible areas (Phillips et al., 2009). When
the environmental ranges captured by observation data
are biased, SDMs ultimately predict sampling effort
rather than the habitat of a given species. To reduce this
sampling bias and improve our models’ predictive capac-
ity, we used the target group background point selection
method in which background points are generated from
observation data for a broader set of species (Jarnevich
et al., 2015; Phillips et al., 2009). We used the 145,000
most recent research-grade observation locations for all
plant species within the model area from iNaturalist.org
as our target group (iNaturalist Users, 2021). We then
spatially filtered and restricted this to 8000 background
points to maximize model speed and performance
(Phillips & Dudík, 2008).

The target group sampling method was compared
with another background point generation method that
randomly places 8000 background points within a 95%
kernel density estimate (KDE) of the presence location
area. We compared the performance of these two back-
ground point generation methods using the average area
under the receiver operating characteristic curve (AUC)
value across all models and cross-validation runs for
California black oak.

We also used the target group background points to
assess the level of environmental bias in our sampling
effort. To do this, we ran the 8000 background points
through our SDMs as input presence locations; high
AUC values (larger than 0.70) would indicate that the
sampling effort had a high environmental bias (Phillips
et al., 2009).

Predictor data

Environmental and climate datasets were standardized
across the model area using ArcGIS Pro 2.9 (ESRI, 2021).
WorldClim bioclimatic data are biologically meaningful
climatic variables representing historical averages from
1970 to 2000 (Fick & Hijmans, 2017). These variables
include annual metrics, seasonal metrics, and climatic
extremes at 30 arc seconds spatial resolution (pixels are
approximately 740 � 920 m within the study area). All
19 bioclimatic variables were used as potential model
inputs (Table 1). Additionally, aspect, slope, and curva-
ture (which indicates if a surface is concave, convex, or
flat) were calculated from a 1/3 arc second (approximately
10 m spatial resolution) digital elevation model provided
by the U.S. Geological Survey (USGS, 2020). Elevation
was also included as a predictor.

To capture the potential impact of past fires, we used
CAL FIRE’s fire perimeter data from 1911 to 2020, which

4 of 16 TAYLOR ET AL.
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include both prescribed fires and wildfires larger than 0.04
km2 (CAL FIRE and USFS, 2021). The polygon fire perim-
eters were converted to raster data with 30 m spatial reso-
lution; if two or more fires overlapped in a given cell, the
year of the more recent fire was used. Fire years were then
converted to a raster representing years since the most
recent fire, with areas with no recorded fire since 1911
conservatively assigned a value of 110 years. This process
was conducted for prescribed fires and wildfires separately
due to their differing impacts on vegetation.

The topographic and fire raster data were reprojected
when necessary and resampled to match the spatial reso-
lution, footprints, and projection of the bioclimatic vari-
ables. Modeling was conducted in the WGS84 geographic
coordinate system (EPSG: 4326), a requirement of the

modeling software. Table 1 lists all the predictor datasets
and their sources.

Ensemble modeling

For each of the 10 species, location data and predictor
data were input into five different SDM algorithms using
the VisTrails Software for Assisted Habitat Modeling
(SAHM, version 2.2.2) (Morisette et al., 2013). The five
models used were boosted regression trees (BRT), ran-
dom forest (RF), Maxent, multivariate adaptive regres-
sion splines (MARS), and a generalized linear model
(GLM) with the default parameterization built into
SAHM; the five selected models provided a mix of widely
used regression and machine learning models (Elith
et al., 2006). The five models were run for each of the
10 species using the following workflow (Figure 2). First,
we removed collinear variables based on a combined cor-
relation coefficient, calculated as the maximum value of
the Pearson, Spearman, and Kendall correlation coeffi-
cients. Collinear variables were removed stepwise,
starting with the variable with the greatest percentage of
deviance explained (based on a univariate generalized
additive model) and removing all of the variables that
were highly correlated with it (correlation coefficient
≥0.75) until no highly correlated variable pairs remained.
Finally, any variable with a percentage of deviance
explained value of less than 1.0% was removed and each
of the five models was run. This process was repeated
independently for each species.

The resulting presence probability surfaces were
converted to binary presence and absence classifications
using the threshold at which the model’s sensitivity
equaled its specificity. We then evaluated the accuracy of
each model using the mean AUC value, or area under
the receiver operating characteristic curve, of 10-fold
cross-validation runs. The AUC value is the probability
that the model will rank a randomly chosen presence
observation higher than a randomly chosen absence
observation (Swets, 1988). We assessed how the mean
AUC value of the cross-validation runs varied across
plant functional types (trees, shrubs, annuals, and peren-
nials). Each model was also evaluated via the percentage
of correctly classified presences, the variable importance
plot, variable response curves, and multivariate environ-
mental similarity surface (MESS) maps, which indicate
areas where a model is extrapolating into environmental
conditions that were not represented in the training data
(Elith et al., 2010).

For each species, the results of the five models were
combined using the binary presence and absence classifica-
tion maps. Any individual model for which the mean AUC

TAB L E 1 Environmental and topographic datasets input as

potential predictors and their sources.

Variable Source

Annual mean temperature WorldClim 2.0

Mean diurnal range WorldClim 2.0

Isothermality WorldClim 2.0

Temperature seasonality WorldClim 2.0

Max temperature of warmest month WorldClim 2.0

Min temperature of coldest month WorldClim 2.0

Temperature annual range WorldClim 2.0

Mean temperature of wettest quarter WorldClim 2.0

Mean temperature of driest quarter WorldClim 2.0

Mean temperature of warmest quarter WorldClim 2.0

Mean temperature of coldest quarter WorldClim 2.0

Annual precipitation WorldClim 2.0

Precipitation of wettest month WorldClim 2.0

Precipitation of driest month WorldClim 2.0

Precipitation seasonality WorldClim 2.0

Precipitation of wettest quarter WorldClim 2.0

Precipitation of driest quarter WorldClim 2.0

Precipitation of warmest quarter WorldClim 2.0

Precipitation of coldest quarter WorldClim 2.0

Elevation USGS DEM

Curvature USGS DEM

Aspect USGS DEM

Slope USGS DEM

Years since wildfire CalFire, USFS

Years since prescribed fire CalFire, USFS

Note: Original spatial resolution of WorldClim data was 30 arc seconds; all
other datasets were 30 m (or 1.2 arc seconds) spatial resolution.

Abbreviations: DEM, digital elevation model; Max, maximum; Min,
minimum; USFS, United States Forest Service; USGS, United States
Geological Survey.
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value of the cross-validation runs was lower than 0.70 was
excluded from the ensemble output. The remaining binary
classifications were then added together to create an ensem-
ble output indicating the total number of included models
(0–5) predicting the species’ presence within a given cell.
To identify areas where multiple cultural species were likely
to be present, we created binary species rasters from the
ensemble output rasters. For each species, any pixels with at
least three models (a majority) predicting that species’
presence were set to 1 and all other pixels were set to
0. These binary species rasters were then summed to create
a raster indicating the number of cultural species possibly
present at that location (0–10). This predicted species-count
map was used in subsequent analyses to identify potential
gathering areas. Figure 2 summarizes this workflow.

Accessibility analysis

The Tribe has some formal access agreements with land-
owners, such as park agencies and conservation organiza-
tions, within their stewardship area. More common are
informal discussions in which these land-owning entities

are open to possible access agreements, but no formal
agreement yet exists. Based on discussions with AMTB
leadership and coauthor knowledge, we compiled areas
where the Tribe has existing or potential gathering agree-
ments from county parcel data and the California
Protected Areas Database (CPAD, 2021). To calculate
summary statistics and prioritize potential gathering
areas, the final predicted species-count raster was clipped
to the potential access areas.

RESULTS

Detailed results for California black oak, spatial results
for wavy-leafed soap plant, and non-spatial results for the
remaining eight species with sensitivity concerns are
included here.

Observation data

There were 401 research-grade iNaturalist observations of
California black oak in the study area and no observations

Observation
locations

BRT GLM Maxent RFMARS

Predictor
variables

BRT
binary

GLM
binary

Maxent
binary

RF
binary

MARS
binary

Probability surface thresholded where sensitivity = specificity

Model agreement
raster

Thresholded where no. models is greater than or equal to 3

Species
distribution

Exclude models with mean cross validation AUC < 0.70

10-fold CV 10-fold CV 10-fold CV 10-fold CV 10-fold CV

F I GURE 2 Diagram of the workflow conducted for each species. Red blocks represent input datasets, blue blocks represent model runs

(cross-validation [CV] testing runs are shown in green), gray blocks represent threshold decisions made by the authors, and purple blocks

represent model outputs. Models included boosted regression trees (BRT), a generalized linear model (GLM), multivariate adaptive

regression spline (MARS), Maxent, and random forest (RF). AUC, area under the receiver operating characteristic curve.
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from the three other data sources. One hundred eighty-three
points were input into the models after excluding duplicates
within each pixel footprint (Figure 1). For the remaining
nine species, the number of total observations ranged from
231 to 1686 and the number of spatially filtered observations
ranged from 109 to 686 (Appendix S1: Table S1).

Background points

The target group background point method improved
the California black oak models’ performance over the
randomized KDE method as measured by the mean testing
AUC value; we therefore used the target group back-
ground point method for our final analysis of all 10 species.
The AUC values of the background point models
(i.e., target group background points input as observation
data) ranged from 0.515 to 0.694 (mean = 0.651), which
indicated low environmental bias in the observation
datasets used (an AUC value of 0.50 indicates no predictive
capability) (Botella et al., 2020; Phillips et al., 2009).
Despite low environmental bias, the target group
background points were distributed much more densely in
the western half of the model area (Appendix S1: Figure S1).

Ensemble modeling: California black oak

Each species was run with a different subset of the
25 potential predictor variables after stepwise exclusion
of collinear variables. In the case of California black oak,
the models were ultimately run with nine predictor vari-
ables: isothermality (mean diurnal range divided by the
annual range in temperature), minimum temperature of

coldest month, precipitation of wettest month, years since
prescribed burn, annual mean temperature, slope, precipi-
tation seasonality, elevation, and aspect (Table 2). For four
of the five models (GLM, MARS, Maxent, and RF), the
three most important variables were isothermality, min-
imum temperature of the coldest month, and precipita-
tion of the wettest month (Table 2). For the BRT model,
the only two input variables selected were isothermality
and precipitation of the wettest month (Table 2).
Figures 3 and 4 display the California black oak binary
presence and absence classification maps individually
and combined, respectively.

All five models indicated high predictive capability in
the training and cross-validation test runs, ranging from
0.853 (GLM) to 0.918 (BRT) in the training runs and
0.847 (GLM) to 0.869 (Maxent) in the testing runs
(Table 3). The difference in AUC and the percent of pres-
ences correctly classified between the training and evalu-
ation runs was small, indicating model consistency
(Table 3, also see Appendix S1: Table S2).

Ensemble modeling: All species

The predictive capacity of this ensemble model approach
varied across the 10 cultural species studied here
(Table 4). Of the 50 individual models run, 47 models
(94%) met our criteria for inclusion in the ensemble out-
put. The three models that were excluded from our final
results due to low predictive capacity used the GLM
(2) and MARS (1) methods. Twenty-nine models (58%)
had an AUC value greater than or equal to 0.80.
Wavy-leafed soap plant had the highest mean AUC
values in testing and training runs (Table 4). Figure 5

TAB L E 2 Mean variable importance (%) across all 11 runs (training and 10-fold cross validation) of each model for California black oak

(Quercus kelloggii).

Variable

Variable importance (%)

BRT GLM MARS Maxent RF Mean

Isothermality (Bio 3) 21.17 21.48 24.12 25.54 12.09 20.88

Min temperature of coldest month (Bio 6) … 5.20 13.55 7.90 3.99 7.66

Precipitation of wettest month (Bio 13) 12.29 5.08 5.19 10.80 4.82 7.63

Precipitation seasonality (Bio 15) … 4.21 2.61 0.55 2.31 2.42

Annual mean temperature (Bio 1) … … 4.72 1.28 0.83 2.27

Slope … … 1.36 1.63 1.35 1.45

Elevation … … 0.63 0.69 1.61 0.98

Aspect … … 0.42 0.27 0.51 0.40

Years since prescribed fire … … 0.00 0.04 0.04 0.03

Note: The selected variables are listed in order of total mean importance across all five models.
Abbreviations: BRT, boosted regression trees; GLM, generalized linear model; MARS, multivariate adaptive regression spline; RF, random forest.
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shows the combined presence classifications for this
species.

Of the five types of models run, RF most frequently
resulted in the highest testing AUC value and GLM in the
lowest testing AUC value (Table 4). Across all 10 cultural
species, RF, Maxent, and BRT models had greater

predictive capacity than the GLM and MARS models
(Table 4). While we did not have a large enough sample
size to statistically compare how AUC values varied across
plant functional types, trees (0.858; n = 1) and shrubs
(0.830; n = 5) had higher AUC values on average than
perennial (0.817; n = 3) and annual plants (0.697; n = 1).

F I GURE 3 California black oak (Quercus kelloggii) presence classification results for each of the five species distribution models:

boosted regression trees (BRT), generalized linear model (GLM), multivariate adaptive regression spline (MARS), Maxent, and random

forest (RF).
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The MESS maps showed only minimal extrapolation
(35 pixels) in the eastern edge of the model area across all
10 species, indicating that the available environment
within the study area was well sampled.

Accessibility analysis

Areas with potential access by the Tribe made up 8.81%
of the study area. The majority of these areas were

F I GURE 4 Number of models (1–5) predicting California black oak (Quercus kelloggii) presence within the study area. All five models

met the criteria for inclusion, that is, the mean area under the receiver operating characteristic curve value of the cross-validation runs was

greater than 0.70.

TAB L E 3 Area under the receiver operating characteristic curve (AUC) values for the five California black oak (Quercus kelloggii)

models for the training run and the average AUC value of the 10-fold cross-validation runs.

Type of model run BRT GLM MARS Maxent RF Mean

Training 0.918 0.853 0.865 0.868 0.894 0.880

Cross validation (mean) 0.860 0.847 0.854 0.869 0.858 0.858

Difference �0.058 �0.007 �0.011 0.001 �0.036 �0.022

Note: The difference indicates the change in the AUC value in the cross-validation runs as compared with the training run, which can be used to evaluate
model consistency.

Abbreviations: BRT, boosted regression trees; GLM, generalized linear model; MARS, multivariate adaptive regression spline; RF, random forest.

ECOSPHERE 9 of 16

 21508925, 2023, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4374 by U

niv of C
alifornia L

aw
rence B

erkeley N
ational L

ab, W
iley O

nline L
ibrary on [01/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



accessible on a possible case-by-case basis, meaning that
access was not guaranteed and that a tribal member
would need to request it and potentially coordinate a date
and time for access. In total, 3.50% (39.87 km2) required a
request for access and gathering, 13.48% (153.75 km2)
allowed some form of access but prohibited gathering,
and 83.03% (947.11 km2) were indicated as potential but
not guaranteed gathering access.

To prioritize within this large area, potential gathering
places were defined as places where two or more cultural
species were predicted to be present based on the predicted
species-count map. Within the study area, 2501.5 km2 or
19.33% of the area contained potential gathering places.
Within the subset of lands where the Tribe may have some
form of access, 609.35 km2 or 53.63% contained potential
gathering places. Places where seven or more cultural
plants were predicted to be present totaled 265.2 km2

(2.1%) of the study area; 75.85 km2 (28.6%) or these
high-priority areas fall within areas where the Tribe has
some form of access. Tables 5 and 6 show the area
(in square kilometers) breakdown by the predicted number
of species present within these two areas (study area and
potential access areas) respectively.

DISCUSSION

Using private and public observation data for 10 priority
plant species and 25 predictor variables, we used an
ensemble modeling approach to predict the potential dis-
tributions of each plant throughout the Amah Mutsun
stewardship area. We then highlighted areas likely to con-
tain multiple species of interest and analyzed how these

predicted distributions overlapped with areas where the
Tribe has various forms of access. Predicted distribution
maps for each of the modeled species also highlight the
best areas to gather specific plants. Our methodology was
designed using best practices in the fields of geospatial
modeling and Indigenous environmental studies in a
number of key ways. In the realm of geospatial modeling,
we employed an ensemble model approach and utilized
target group presences as background points to reduce
model bias. Based on best practices in the field of
Indigenous environmental studies, we built our research
partnership on the principles of free, prior, and informed
consent from the Amah Mutsun Tribal Council. In addi-
tion, we conducted interviews with community members
and built relationships with tribal leadership over several
years prior to beginning this study, which allowed us to
design culturally relevant research.

We found that 2.1% of the Amah Mutsun stewardship
area is potential habitat for seven or more of the cultural
plant species included in our analysis; the Tribe has some
form of access to approximately a third of these high-priority
areas. This subset represents the highest priority for future
investigation as potential gathering areas because access
agreements or partnerships are already in place. For the
remaining high-priority areas, the Tribe may use these maps
to strategically reach out to other land-owning agencies or
individuals as their gathering program expands.

Model accuracy

We found these models to be highly predictive of species
locations. Of the 50 models run in this study, the majority

TAB L E 4 Mean area under the receiver operating characteristic curve (AUC) values for the training and 10-fold cross-validation (CV)

testing runs of the five models for each of the 10 cultural species.

Species

Mean AUC
Met ensemble

criteria

Testing AUC by model

Training CV testing Highest Lowest

Chlorogalum pomeridianum 0.939 0.905 5 RF GLM

Corylus cornuta ssp. californica 0.919 0.894 5 RF GLM

Vaccinium ovatum 0.903 0.885 5 Maxent GLM

Quercus kelloggii 0.880 0.858 5 RF GLM

Rubus parviflorus 0.875 0.854 5 Maxent MARS

Clinopodium douglasii 0.851 0.821 5 RF GLM

Rubus ursinus 0.798 0.776 5 Maxent GLM

Sambucus nigra ssp. caerulea 0.779 0.743 5 BRT GLM

Artemisia douglasiana 0.767 0.725 4 BRT GLM

Calandrinia menziesii 0.744 0.697 3 RF GLM

Note: The column labeled “Met ensemble criteria” indicates the number of models (of the five) for which the mean testing AUC was greater than 0.70 and was
therefore included in that species’ final model agreement raster. The table is sorted by the mean cross-validation testing AUC value.
Abbreviations: BRT, boosted regression trees; GLM, generalized linear model; MARS, multivariate adaptive regression spline; RF, random forest.
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(94%) had a mean AUC value greater than or equal to
0.70 in the cross-validation runs. There are a number of
metrics and factors to consider when evaluating the pre-
dictive power of SDMs. First, in the case of presence-only
species distribution modeling, the maximum achievable
AUC value is less than 1, with widely distributed species
having a lower maximum achievable AUC value (Wiley
et al., 2003). It is therefore not advisable to compare AUC
values across species without knowledge of the relative
differences in their coverage within the study area (Wiley
et al., 2003). AUC values are valuable for comparing dif-
ferent models and parameterizations with respect to each
species individually. Across all 10 species, RF and then
Maxent models most frequently had the highest
predictivity while GLM most frequently had the lowest
predictivity (Table 4). This may be because GLMs generally

do not capture complex ecological responses as well as the
other methods used here (Elith et al., 2006). In the case of
California black oak, the GLM and MARS models
predicted a more widespread distribution relative to the
other three modeling methods and had the two lowest per-
centages of correctly classified presences (Figure 3;
Appendix S1: Table S2). Across all 10 species, we found that
the remaining three models (RF, BRT, and Maxent) had
the highest predictivity and may be more suitable for
presence-only species distribution modeling (Table 4).

We also evaluated how well the relative importance
of each predictor variable lined up with our expectations
for each species. In the case of California black oak,
isothermality and precipitation of the wettest month were
retained by all five models and had the first and third
highest mean variable importance (Table 2). Across the

F I GURE 5 Number of models (1–5) predicting wavy-leafed soap plant (Chlorogalum pomeridianum) presence within the study area.

All five models met the criteria for inclusion, that is, the mean area under the receiver operating characteristic curve value of the

cross-validation runs was greater than 0.70.
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five models, California black oak habitat was more likely
to be predicted in wetter areas and at higher elevations
where temperatures are more variable throughout the
year, which fits our expectations for the species.

Our methods were novel in that we included years
since the most recent wildfire and years since the most
recent prescribed fire as potential predictors. One of these
factors was selected as an input into at least one of the
five models for all but 1 of the 10 species (R. ursinus), and
for 13 (prescribed fire) and 27 (wildfire) of the 50 total
models. However, their mean variable importance tended
to be low, as in the case of California black oak (Table 2).
This does not necessarily indicate that fire or other forms
of disturbance are not predictive of plant distribution, but
rather show that it is difficult to incorporate a temporally

and spatially dynamic process into a static model.
Policies of fire suppression and widespread urban devel-
opment have meant that both wildfire and prescribed fire
are rare within the study area, and this low occurrence
makes it difficult to accurately evaluate the importance
of fire in predicting plant habitat.

Our methods appeared to better predict the distribu-
tion of trees and shrubs as compared with annual and
perennial plants, which may be due in part to variation
in life-history strategies. For example, many annual
plants depend on disturbance for survival and only 2 of
the 25 potential predictors (years since prescribed fire
and wildfire) reflected a form of disturbance. Our results
are promising and justify future work to explore metrics
of disturbance frequency in addition to disturbance pres-
ence, which may better predict species that are adapted
to certain disturbance regimes.

Our ensemble results lined up well with our expected
distribution for each of the 10 species. Of the 10 species
included in our analysis, the 5 most widely distributed
species (according to the authors’ ecological knowledge
and CalFlora’s estimated range maps within the study
area) have the five lowest AUC values (CalFlora, 2021).
This aligns with previous work that showed that the
maximum achievable AUC value is lower for widely dis-
tributed species (Wiley et al., 2003). The MESS maps
indicated very little extrapolation across all 50 models.
However, our models systematically underpredicted plant
distributions in the eastern and southern portions of the
study area, which is likely driven by two interrelated fac-
tors. First, the sampling effort of our observation data
was biased toward the western and northern quadrants
of the study area where there are more public parks and
trails (Appendix S1: Figure S1). Second, the inland areas
in the south and east portions of the study area experi-
ence a different climate characterized by greater tempera-
ture extremes. Therefore, while it may be the case that
some of these plants do not grow farther inland, it may
also be that our input data do not accurately reflect how
plants are distributed in this inland biome. A critical next
step will be to collect field observations from these
under-sampled areas to iteratively improve these models.

Limitations

Our methods work to mitigate the potential biases of
SDMs in several ways. First, we used a target group back-
ground point selection method to account for potential
environmental bias in the sampling effort of our observa-
tion data. Second, we used an ensemble modeling
approach that uses majority agreement to assign any
pixel as predicted habitat and excludes individual models

TAB L E 5 Area of potential gathering places within the study

area, based on the number of species predicted by ensemble

distribution modeling.

Predicted species count Area (km2) Percentage

0 8254.4 63.77

1 2188.2 16.90

2 889.7 6.87

3 424.0 3.28

4 428.0 3.31

5 293.5 2.27

6 201.2 1.55

7 170.7 1.32

8 78.2 0.60

9 16.3 0.13

Total 12,944.1 100.00

TAB L E 6 Area of potential gathering places, based on the

number of species predicted by ensemble distribution modeling,

within the areas where the Amah Mutsun Tribal Band may have

some form of land access.

Predicted species count Area (km2) Percentage

0 247.41 21.77

1 279.47 24.60

2 245.21 21.58

3 87.13 7.67

4 81.73 7.19

5 74.48 6.56

6 44.94 3.96

7 41.75 3.67

8 25.24 2.22

9 8.86 0.78

Total 1136.23 100.00
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with lower predictive capacity. Third, we excluded spe-
cies for which the number of observations was below
100. Fourth, we preprocessed our inputs to reduce
pseudo-oversampling of observation data and ran each
model using an uncorrelated and relevant subset of pre-
dictor datasets. We also chose to include two types of fire
history (both wildfires and prescribed fire) as predictor
variables in our model given the unique relationships
between many Amah Mutsun cultural plants and fire.

Despite these mitigation efforts, it is important to
acknowledge the assumptions and limitations that are
inherent to SDMs. Specifically, SDMs assume that the
presence locations for each species are a representative
sample of its habitat, that the chosen predictor variables
accurately capture the habitat constraints on each spe-
cies, and that the spatial resolution of the models can
capture each species’ habitat (Jarnevich et al., 2015).
In particular, while the bioclimatic variables are an
extremely useful resource for distribution modeling, they
reduced the spatial resolution of our analysis 25-fold.
At this coarser resolution, our topographic predictor
inputs did not reveal important microhabitats such as
small ridges and valleys that may be important indicators
of each plant’s habitat.

In addition, we used presence-only models that lever-
age background points (as opposed to absence points) to
model the environmental niche of each species. The
iNaturalist observation data incorporated here are often
collected opportunistically and we found that the sam-
pling effort was biased toward popular or accessible areas
(Appendix S1: Figure S1). We used the target group back-
ground point method to reduce the potential bias of our
models resulting from this sampling bias and found that
it increased the predictive capability of our models,
which aligns with previous studies (Botella et al., 2020;
Phillips et al., 2009). We found that the iNaturalist data
were skewed not only toward accessible areas but also
toward certain taxa, and that observations of native
grasses were particularly sparse. Many native grass spe-
cies are important cultural plants for the Tribe but were
ultimately excluded due to an insufficient number of
unique observation locations. Accurate identification of
grass species is difficult and often requires specialized
knowledge of grass anatomy, which may be less common
among iNaturalist users. Lastly, these models identify
areas where a cultural species is likely to be present, but
do not indicate where each is likely to be most abundant.
The implications of this are discussed in more detail in
the next section.

While we acknowledge the limitations of our data
and models, these predicted distributions are a valuable
step toward rebuilding the Tribe’s relationships with cul-
tural plants. Our results will be used to direct valuable

resources toward the highest priority areas and are not
considered definitive species maps. Our ensemble model-
ing approach also allows us to map regions of more or
less certainty, either by assessing how many models
predicted presence in a given area, or by viewing the
MESS maps to determine if any models were extrapolat-
ing into a given area.

Applications and future work

The primary next step will be to prioritize a subset of the
areas identified as potential gathering areas for further
investigation in the field. There are several existing fac-
tors that the Tribe may wish to use in this prioritization,
including proximity to known Amah Mutsun sacred and
cultural landscapes, ease of access (proximity to trails,
parking lots, and tribal members’ homes), and ADA
accessibility. We are partnering with AMTB to create
detailed maps showing these factors in relation to the
potential gathering areas. Once refined, these potential
gathering areas will become part of an interactive map-
ping tool (restricted to the Amah Mutsun community)
that supports wider access to ethnobotanical resources,
an expressed tribal priority.

In addition to directly supporting the Tribe’s gather-
ing program, this analysis can be used to protect cultur-
ally and ecologically sensitive areas. Specifically, these
maps empower the Tribe to request changes in the man-
agement of these priority areas to exclude the use of pes-
ticides and herbicides, or to conduct mowing and
burning to the times of year best suited to sensitive spe-
cies. In addition, there are multiple potential gathering
areas in places where the Tribe does not yet have access
or gathering rights; these maps can therefore be used to
begin new partnerships, both with public agencies and
private landowners.

Future work to analyze phenological patterns within
the priority areas identified here could further refine the
Tribe’s stewardship programs. Stewardship and gathering
of cultural plants require knowledge of both the location
and phenology of each plant; the phenology determines
not only when a plant may be ripe or ready to gather, but
also the appropriate times for other stewardship activities
such as cultural burning, mowing, or sowing of seeds.
Given that the ideal timing of gathering or other steward-
ship activities may vary year to year and along environ-
mental gradients, remote sensing methods that efficiently
capture phenological signatures over large spatial and
temporal scales can augment existing place-based knowl-
edge held by tribal members.

The Tribe still faces many barriers in rebuilding
relationships with cultural plants. In the absence of
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Indigenous stewardship and reciprocal relationship, many
of these plants will not produce materials of an abundance
or quality high enough for cultural use or consumption.
For example, California black oak acorns can be infested
with acorn weevil in the absence of cultural burning
(Anderson, 2013). Previous work with the Karuk and
Yurok tribes also highlighted how California hazelnut
(C. cornuta ssp. californica) required thinning or burning
to produce basketry-quality shoots (Marks-Block
et al., 2019). In areas where a cultural plant is present but
not abundant enough for tribal members to gather it, addi-
tional stewardship or restoration may be necessary before
gathering is possible. The minimum plant abundance nec-
essary for gathering will vary by species and will likely be
determined in partnership between the Tribe and relevant
landowner. Second, while these maps serve as a guide for
prioritizing new access partnerships, they do not do all the
work of outreach, communication, and relationship build-
ing that is required to build and maintain those partner-
ships. Finally, there are challenges when balancing
confidentiality and ease of use. Given the sensitive nature
of the potential gathering area maps, it is critical that they
be kept within the Amah Mutsun community. However, if
they are kept so confidential that most community mem-
bers cannot use them, they lose their purpose. An inte-
gral next step in our work will be to incorporate our
results into an accessible mobile platform that can be
kept internal to the Amah Mutsun community.

CONCLUSIONS

This work is a novel example of how geospatial model-
ing can be utilized by an Indigenous community to
rebuild relationships with cultural plants across large
areas of their homelands and directly contribute to land
access and cultural revitalization. Our analysis paints a
picture of the most accessible places for the restoration
of relationships with native plants, which will help to
direct limited time and resources to priority areas. The
technical methods we developed represent cutting-edge
modeling techniques and incorporate best practices in
species distribution modeling. We compared five com-
monly used SDMs and found that RF and Maxent
models performed best across 10 plant species in a
presence-only modeling context. We also included past
prescribed fire and wildfire as metrics of disturbance on
the landscape and show their relevance for predicting
plant habitat, which we hope will spark more work in
this area. Furthermore, our methodology leverages
publicly available data and an open-source program
(SAHM), enabling us to quickly scale up this analysis to

include dozens of cultural plants at no cost. These
methods are easily replicable and can be adopted by
other Indigenous communities in their diverse efforts to
reconnect with land. Finally, this work is an example of
a partnership between spatial scientists and an
Indigenous community in which the results of the study
are directly applied toward cultural revitalization. We
modeled a framework for integrating culturally sensitive
information into geospatial research while respecting its
confidentiality and the sovereignty of that Indigenous
community.
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