First Detailed Microscopy Evidence of Bacteria at the Lower Size Limit of Life

March 04, 2015

By Dan Krotz, Lawrence Berkeley Lab


This cryo-electron tomography image reveals the internal structure of an ultra-small bacteria cell like never before. The cell has a very dense interior compartment and a complex cell wall. The darker spots at each end of the cell are most likely ribosomes. The image was obtained from a 3-D reconstruction. The scale bar is 100 nanometers. (Credit: Berkeley Lab)

Scientists have captured the first detailed microscopy images of ultra-small bacteria that are believed to be about as small as life can get. The research was led by scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory and the University of California, Berkeley. The existence of ultra-small bacteria has been debated for two decades, but there hasn’t been a comprehensive electron microscopy and DNA-based description of the microbes until now.

The cells have an average volume of 0.009 cubic microns (one micron is one millionth of a meter). About 150 of these bacteria could fit inside an Escherichia coli cell and more than 150,000 cells could fit onto the tip of a human hair.

The scientists reported their findings Friday, Feb. 27, in the journal Nature Communications.

The diverse bacteria were found in groundwater and are thought to be quite common. They’re also quite odd, which isn’t a surprise given the cells are close to and in some cases smaller than several estimates for the lower size limit of life. This is the smallest a cell can be and still accommodate enough material to sustain life. The bacterial cells have densely packed spirals that are probably DNA, a very small number of ribosomes, hair-like appendages, and a stripped-down metabolism that likely requires them to rely on other bacteria for many of life’s necessities.

The bacteria are from three microbial phyla that are poorly understood. Learning more about the organisms from these phyla could shed light on the role of microbes in the planet’s climate, our food and water supply, and other key processes.

“These newly described ultra-small bacteria are an example of a subset of the microbial life on earth that we know almost nothing about,” says Jill Banfield, a Senior Faculty Scientist in Berkeley Lab’s Earth Sciences Division and professor in the departments of Earth and Planetary Science and Environmental Science, Policy and Management.

“They’re enigmatic. These bacteria are detected in many environments and they probably play important roles in microbial communities and ecosystems. But we don’t yet fully understand what these ultra-small bacteria do,” says Banfield.

Banfield is a co-corresponding author of the Nature Communications paper with Birgit Luef, a former postdoctoral researcher in Banfield’s group who is now at the Norwegian University of Science and Technology, Trondheim.

Read the full story at the source